Math 259A Lecture 2 Notes

Daniel Raban

September 30, 2019

1 Introduction to C^* -Algebras

1.1 Recap

Recall: We are interested in the following objects.

Definition 1.1. A *-algebra M is an algebra with an involution * (called the adjoint) such that if $T \in M$, then $T^* \in M$.

Definition 1.2. A von Neumann algebra $M \subseteq B(H)$ is a *-algebra of operators on a Hilbert space with $1 = id_H \in M$ which is closed in the weak operator topology.

Definition 1.3. A C^* -algebra is a *-algebra of operators $M_0 \subseteq B(H)$ with $1_{M_0} = id_H$ which is closed in the operator norm.

Remark 1.1. Since the weak operator topology is weaker than the norm topology, von Neumann algebras are C^* -algebras.

Definition 1.4. A Banach algebra is a Banach space with multiplication such that $||xy|| \le ||x|| ||y||$.

We will aim to prove the following.

Theorem 1.1. If M is a Banach algebra (with 1_M) and with an involution * satisfying $||x^*x|| = ||x||^2$ for all $x \in M$, then there is a injective, isometric *-algebra morphism $\theta : M \to B(H)$. In other words, any algebra satisfying these axioms is a concrete C^* -algebra.¹

1.2 Involutive algebras

Definition 1.5. If M is an algebra (over \mathbb{C}), then an **involution** on M is a map $* : M \to M$ satisfying

¹We can consider these to be the "abstract C^* -axioms."

- 1. $(\lambda x)^* = \overline{\lambda} x^*$ 2. $(x+y)^* = x^* + y^*$
- 3. $(xy)^* = y^*x^*$

4.
$$(x^*)^* = x$$
.

Example 1.1. B(H) has the adjoint map as an involution.

Example 1.2. If X is compact, C(X) is an algebra with the involution of complex conjugation given by $\overline{f}(x) = \overline{f(x)}$. If we take $C_0(X)$ where X is only locally compact, then we still get an algebra, but it does not have an identity.

Example 1.3. Let G be a group. Then $L^1(G)$ is an algebra with the product $f \cdot g$ of convolution. We have the involution $f^*(g) = \overline{f(g^{-1})}$.

Proposition 1.1. The adjoint satisfies the following properties:

1. $1^* = 1$.

2. If x is invertible $(x \in Inv(M))$, then $x^* \in Inv(M)$, and $(x^*)^{-1} = (x^{-1})^*$.

Definition 1.6. If $x = x^*$, we call x **Hermitian**. We denote the set of Hermitian elements as $M_h = \{x \in M : x = x^*\}$.

Definition 1.7. An element $x \in M$ is normal if $x^*x = xx^*$.

In this case, the *-algebra generated by x is commutative.

Definition 1.8. An element $x \in M$ is **unitary** if $x^*x = xx^* = 1$ (i.e. x is invertible an $x^{-1} = x^*$. We denote U(M) to be the set of unitary elements, which is a subgroup of Inv(M).

Definition 1.9. An element $x \in M$ is an **isometry** if $x^*x = 1$.

Remark 1.2. In general, this does not necessarily mean that x is unitary. For example, we can take the map $x : \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ given by $(x_0, x_1, x_2, \dots) \mapsto (0, x_1, x_2, x_3, \dots)$.

Definition 1.10. An element $x \in M$ is an **orthogonal projection** if $x^2 = x = x^*$.

Definition 1.11. An element $x \in M$ is a **partial isometry** if x^*x and xx^* are projections.

Proposition 1.2. We can always decompose $x = \operatorname{Re} x + i \operatorname{Im}(x)$, where $\operatorname{Re} x, \operatorname{Im} x$ are Hermitian via

$$\operatorname{Re}(x) = \frac{x + x^*}{2}, \qquad \operatorname{Im}(x) = \frac{x - x^*}{2i}.$$

Definition 1.12. If $x \in M$, the **spectrum** of x is the set $\text{Spec}(x) = \{x \in \mathbb{C} : \lambda 1 - x \text{ is not invertible in } M\}$. We also call $\rho(X) = \{\lambda : \lambda 1 - x \text{ is invertible}\}$ the **resolvent** of x.

Proposition 1.3. $\text{Spec}(x^*) = (\text{Spec}(x))^*$, and $\text{Spec}(x^{-1}) = (\text{Spec}(x))^{-1}$.

Definition 1.13. Functionals on an involutive² algebra M are linear maps $\varphi : M \to \mathbb{C}$. The involution on functionals is given by $\varphi^*(x) = \overline{\varphi(x^*)}$.

1.3 Normed involutive algebras

Definition 1.14. A normed involutive algebra M is an involutive algebra with a norm such that $||xy|| \le ||x|| ||y||$ and $||x^*|| = ||x||$ for all $x \in M$. This is a **Banach algebra** if M is complete.

Definition 1.15. If M is a Banach space, we denote the **dual space** M^* to be the set of continuous linear functionals on M.

Proposition 1.4. $\|\varphi^*\| = \|\varphi\|$ for all $\varphi \in M^*$. Also, if $\varphi = \varphi^*$, then $\|\varphi|_{M_h}\| = \|\varphi\|$.

Notation: If X is a Banach space and r > 0, then we denote the closed unit ball as $(X)_r := \{x \in X : ||x|| \le r\}.$

Definition 1.16. A Banach algebra M with involution satisfying $||x^*x|| = ||x||^2$ for all $x \in M$ is called an (abstract) C^* -algebra. This condition is called the C^* -axiom.

Remark 1.3. It is enough to show that $||x^*x|| \ge ||x||^2$ for all x.

Proposition 1.5. $||x|| = \sup_{y \in (M)_1} ||xy||$. This gives us an isometric embedding of $M \to B(M)$ given by $x \mapsto L_x$, where $L_x(y) = xy$.

Proposition 1.6. *If* $M \neq 0$ *, then* ||1|| = 1*.*

Proposition 1.7. For any $u \in U(M)$, ||u|| = 1.

1.4 Spectra in Banach algebras

Definition 1.17. The spectral radius of x is $R(x) = \sup\{|\lambda| : \lambda \text{ in } \operatorname{Spec}(x)\}$.

Proposition 1.8. $R(x) \leq ||x||$.

If M is a Banach algebra, $x \in M$ and f is an entire function on \mathbb{C} , then $f(x) = \sum_{n=0}^{\infty} a - nx^n$ makes sense.

 $^{^2\}mathrm{We}$ call them involutive because using the term *-algebra makes people strictly think of operator algebras.

Example 1.4. We can define $\exp(x) = \sum_{n=0}^{\infty} x^n / n!$.

Proposition 1.9. If M has an involution and $h \in M_h$, then $\exp(ih) = \exp(-ih)$.

Proposition 1.10. Let M be an involutive Banach algebra, Then

- 1. If $h = h^*$, then $\exp(ih) \in U(M)$.
- 2. If $u \in U(M)$, then $\operatorname{Spec}(u) \subseteq \mathbb{T}$.
- 3. If $h = h^*$, then $\operatorname{Spec}(h) \subseteq \mathbb{R}$.

Proof. 1. $u = \exp(ih)$ has $u^* = \exp(-ih)$ as its inverse.

2. Spec
$$(u) = (\text{Spec}(u^{-1})^{-1}, \text{ and } ||R(u)|| \le ||u|| \text{ and } ||R(u^{-1})|| \le ||u^{-1}||.$$

3. Spec $(h) = \text{Spec}(h^*) = \overline{\text{Spec}(h)}.$

Lemma 1.1. Let *M* be a Banach algebra, and let $x \in M$ iwth ||1 - x|| < 1. Then *x* is invertible, and $||x^{-1}|| \le 1/(1 - ||1 - x||)$.

Proof. The series $y = \sum_{n=0}^{\infty} (1-x)^n$ is convergent in norm and hence makes sense in M. Then

$$xy = (1 - (1 - x))\sum_{n=0}^{\infty} (1 - x)^n = \lim(1 - (1 - x)^{n+1}) = 1,$$

so y is an inverse for x.

Corollary 1.1. $\operatorname{Inv}(M)$ is open, and the map $\operatorname{Inv}(M) \to \operatorname{Inv}(M)$ sending $x \mapsto x^{-1}$ is continuous.

Proof. Let x be invertible, and let $||y - x|| \le 1/||x^{-1}||$. Then

$$||x^{-1}y - 1|| \le ||x^{-1}|| ||y - x|| < 1,$$

so $x^{-1}y$ is invertible by the lemma. So y is invertible.

Continuity follows from $x^{-1} - y^{-1} = x^{-1}(y - x)y^{-1}$.

Corollary 1.2. Spec $(x) \subseteq (M)_{\|x\|}$.

Proof. If $|\lambda| > ||x||$, then $1 > ||\lambda^{-1}x||$, so $1 - \lambda^{-1}x$ is invertible by the lemma. So $\lambda - x$ is invertible. So $\lambda \notin \text{Spec}(x)$.

Theorem 1.2. Spec(x) is compact and nonempty.

Proof. Spec(x) is closed by continuity of $y \mapsto y^{-1}$. It is bounded, so it is compact. To show that $\operatorname{Spec}(x) \neq \emptyset$, let $F : \rho(x) \to M$ be $F(\lambda) = (\lambda 1 - x)^{-1}$. We claim that F is analytic³: in fact, we have $\frac{d}{d\lambda}F(\lambda) = -(\lambda 1 - x)^{-2}$. So if $\operatorname{Spec}(x) = \emptyset$, then F is entire. But $\lim_{|\lambda|\to\infty} ||F(\lambda)|| = 0$, as

$$\|(\lambda - x)^{-1}\| = |\lambda^{-1}| \|(1 - x/\lambda)^{-1}\| \le \frac{1}{|\lambda|} \frac{1}{1 - \|x/\lambda\|} \to 0.$$

By Liouville's theorem, F is constant, so F = 0.4 But this is impossible.

Theorem 1.3 (Šilov). Let M be a Banach slagebra, and let $N \subseteq M$ be a sub Banach algebra containing 1_M . If $x \in N$, then the boundary of $\operatorname{Spec}_N(x)$ is a subset of the boundary of $\operatorname{Spec}_M(x)$.

Remark 1.4. We always have $\operatorname{Spec}_M(x) \subseteq \operatorname{Spec}_N(x)$. This theorem gives part of the other direction.

Proof. It suffices to show that the boundary of $\operatorname{Spec}_N(x)$ is contained in $\operatorname{Spec}_M(x)$. Let $\lambda_0 \in \partial \operatorname{Spec}_N(x)$, and let $\{\lambda_n\} \subseteq \rho_N(x)$ with $\lambda_n \to \lambda_0$. If for some n, m, we were to have $\|(\lambda^n - x)^{-1}\| < 1/|\lambda_0 - \lambda_n|$, it would follow that $\|(\lambda_0 - x) - (\lambda_n - x)\| < 1/\|(\lambda_n - x)^{-1}\|$. Thus, $\lambda_0 - x$ is invertible in N by the lemma. This is a contradiction, so $\|(\lambda_n - x)^{-1}\| \to \infty$. Now if $\lambda_0 \notin \operatorname{Spec}_M(x)$, then $\|(\lambda - x)^{-1}\|$ is bounded for λ close enough to λ_0 . This contradicts $\|(\lambda_n - x)^{-1}\| \to \infty$.

Lemma 1.2 (Spectral radius formula). $R(x) = \lim_{n \to \infty} ||x^n||^{1/n}$.

We will prove this later.

1.5 Contractivity of morphisms into C*-algebras

Proposition 1.11. If $N \subseteq M$ are C^* -algebras with $1_M \in N$ and $x \in N$, then $\operatorname{Spec}_N(x) = \operatorname{Spec}_M(x)$.

Proof. Assume first that $x = x^*$. Then $\operatorname{Spec}_N(x)$, $\operatorname{Spec}_M(x) \subseteq \mathbb{R}$. Then Silov's theorem implies that $\operatorname{Spec}_N(x) = \operatorname{Spec}_M(x)$. For general x, invertibility of x in M implies invertibility of x^*x in M. This implies that x^*x is invertible in N, which provides a $y \in N$ such that $(yx^*)x = 1$. So x is invertible in N.

Proposition 1.12. Let M be a Banach involutive algebra, and let N be a C^{*}-algebra. Let $\pi: M \to N$ be a unital *-morphism.⁵

³This is in the sense of holomorphic functional calculus.

⁴If you are uncomfortable with using Liouville's theorem when F is operator-valued, use this trick. Take any $\varphi \in M^*$. Then $\lambda \mapsto \varphi(F(\lambda))$ is analytic, entire, and = 0. Using Hahn-Banach, it follows that F = 0.

 $^{{}^{5}}$ This means it is an algebra homomorphism. This condition says nothing about the norm, a priori.

Proof. For $y \in N$ with $y = y^*$, we have $||y^2|| = ||y^*y|| = ||y||^2$. Iterating thism we get $||y^{2^n}||^{1/2^n} = ||y||$. The left hand side tends to R(y), so R(y) = ||y||. If $x \in M$, we have $\operatorname{Spec}_N(\pi(x)) \subseteq \operatorname{Spec}_M(x)$ (since π is an algebra homomorphism, it preserves invertibility). So we get $R_N(\pi(x)) \leq R_M(x) \leq ||x||$. So

~

$$\|\pi(x)\|^2 = \|\pi(x^*x)\| = R_N(\pi(x^*x)) \le \|x^*x\| \le \|x\|^2.$$