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1 Introduction to C∗-Algebras

1.1 Recap

Recall: We are interested in the following objects.

Definition 1.1. A *-algebra M is an algebra with an involution ∗ (called the adjoint)
such that if T ∈M , then T ∗ ∈M .

Definition 1.2. A von Neumann algebra M ⊆ B(H) is a *-algebra of operators on a
Hilbert space with 1 = idH ∈M which is closed in the weak operator topology.

Definition 1.3. A C∗-algebra is a *-algebra of operators M0 ⊆ B(H) with 1M0 = idH
which is closed in the operator norm.

Remark 1.1. Since the weak operator topology is weaker than the norm topology, von
Neumann algebras are C∗-algebras.

Definition 1.4. A Banach algebra is a Banach space with multiplication such that ‖xy‖ ≤
‖x‖‖y‖.

We will aim to prove the following.

Theorem 1.1. If M is a Banach algebra (with 1M ) and with an involution * satisfying
‖x∗x‖ = ‖x‖2 for all x ∈ M , then there is a injective, isometric *-algebra morphism
θ : M → B(H). In other words, any algebra satisfying these axioms is a concrete C∗-
algebra.1

1.2 Involutive algebras

Definition 1.5. IfM is an algebra (over C), then an involution onM is a map ∗ : M →M
satisfying

1We can consider these to be the “abstract C∗-axioms.”
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1. (λx)∗ = λx∗

2. (x+ y)∗ = x∗ + y∗

3. (xy)∗ = y∗x∗

4. (x∗)∗ = x.

Example 1.1. B(H) has the adjoint map as an involution.

Example 1.2. If X is compact, C(X) is an algebra with the involution of complex conju-
gation given by f(x) = f(x). If we take C0(X) where X is only locally compact, then we
still get an algebra, but it does not have an identity.

Example 1.3. Let G be a group. Then L1(G) is an algebra with the product f · g of
convolution. We have the involution f∗(g) = f(g−1).

Proposition 1.1. The adjoint satisfies the following properties:

1. 1∗ = 1.

2. If x is invertible (x ∈ Inv(M)), then x∗ ∈ Inv(M), and (x∗)−1 = (x−1)∗.

Definition 1.6. If x = x∗, we call x Hermitian. We denote the set of Hermitian elements
as Mh = {x ∈M : x = x∗}.

Definition 1.7. An element x ∈M is normal if x∗x = xx∗.

In this case, the ∗-algebra generated by x is commutative.

Definition 1.8. An element x ∈ M is unitary if x∗x = xx∗ = 1 (i.e. x is invertible an
x−1 = x∗. We denote U(M) to be the set of unitary elements, which is a subgroup of
Inv(M).

Definition 1.9. An element x ∈M is an isometry if x∗x = 1.

Remark 1.2. In general, this does not necessarily mean that x is unitary. For example,
we can take the map x : `2(N)→ `2(N) given by (x0, x1, x2, . . . ) 7→ (0, x1, x2, x3, . . . ).

Definition 1.10. An element x ∈M is an orthogonal projection if x2 = x = x∗.

Definition 1.11. An element x ∈M is a partial isometry if x∗x and xx∗ are projections.

Proposition 1.2. We can always decompose x = Rex + i Im(x), where Rex, Imx are
Hermitian via

Re(x) =
x+ x∗

2
, Im(x) =

x− x∗

2i
.
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Definition 1.12. If x ∈ M , the spectrum of x is the set Spec(x) = {x ∈ C : λ1 −
x is not invertible in M}. We also call ρ(X) = {λ : λ1− x is invertible} the resolvent of
x.

Proposition 1.3. Spec(x∗) = (Spec(x))∗, and Spec(x−1) = (Spec(x))−1.

Definition 1.13. Functionals on an involutive2 algebra M are linear maps ϕ : M → C.
The involution on functionals is given by ϕ∗(x) = ϕ(x∗).

1.3 Normed involutive algebras

Definition 1.14. A normed involutive algebra M is an involutive algebra with a norm
such that ‖xy‖ ≤ ‖x‖‖y‖ and ‖x∗‖ = ‖x‖ for all x ∈M . This is a Banach algebra if M
is complete.

Definition 1.15. If M is a Banach space, we denote the dual space M∗ to be the set of
continuous linear functionals on M .

Proposition 1.4. ‖ϕ∗‖ = ‖ϕ‖ for all ϕ ∈M∗. Also, if ϕ = ϕ∗, then ‖ϕ|Mh
‖ = ‖ϕ‖.

Notation: If X is a Banach space and r > 0, then we denote the closed unit ball as
(X)r := {x ∈ X : ‖x‖ ≤ r}.

Definition 1.16. A Banach algebra M with involution satisfying ‖x∗x‖ = ‖x‖2 for all
x ∈M is called an (abstract) C∗-algebra. This condition is called the C∗-axiom.

Remark 1.3. It is enough to show that ‖x∗x‖ ≥ ‖x‖2 for all x.

Proposition 1.5. ‖x‖ = supy∈(M)1 ‖xy‖. This gives us an isometric embedding of M →
B(M) given by x 7→ Lx, where Lx(y) = xy.

Proposition 1.6. If M 6= 0, then ‖1‖ = 1.

Proposition 1.7. For any u ∈ U(M), ‖u‖ = 1.

1.4 Spectra in Banach algebras

Definition 1.17. The spectral radius of x is R(x) = sup{|λ| : λ in Spec(x)}.

Proposition 1.8. R(x) ≤ ‖x‖.

If M is a Banach algebra, x ∈ M and f is an entire function on C, then f(x) =∑∞
n=0 a− nxn makes sense.

2We call them involutive because using the term *-algebra makes people strictly think of operator
algebras.
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Example 1.4. We can define exp(x) =
∑∞

n=0 x
n/n!.

Proposition 1.9. If M has an involution and h ∈Mh, then exp(ih) = exp(−ih).

Proposition 1.10. Let M be an involutive Banach algebra, Then

1. If h = h∗, then exp(ih) ∈ U(M).

2. If u ∈ U(M), then Spec(u) ⊆ T.

3. If h = h∗, then Spec(h) ⊆ R.

Proof. 1. u = exp(ih) has u∗ = exp(−ih) as its inverse.

2. Spec(u) = (Spec(u−1)−1, and ‖R(u)‖ ≤ ‖u‖ and ‖R(u−1)‖ ≤ ‖u−1‖.

3. Spec(h) = Spec(h∗) = Spec(h).

Lemma 1.1. Let M be a Banach algebra, and let x ∈ M iwth ‖1 − x‖ < 1. Then x is
invertible, and ‖x−1‖ ≤ 1/(1− ‖1− x‖).

Proof. The series y =
∑∞

n=0(1 − x)n is convergent in norm and hence makes sense in M .
Then

xy = (1− (1− x))
∞∑
n=0

(1− x)n = lim(1− (1− x)n+1) = 1,

so y is an inverse for x.

Corollary 1.1. Inv(M) is open, and the map Inv(M) → Inv(M) sending x 7→ x−1 is
continuous.

Proof. Let x be invertible, and let ‖y − x‖ ≤ 1/‖x−1‖. Then

‖x−1y − 1‖ ≤ ‖x−1‖‖y − x‖ < 1,

so x−1y is invertible by the lemma. So y is invertible.
Continuity follows from x−1 − y−1 = x−1(y − x)y−1.

Corollary 1.2. Spec(x) ⊆ (M)‖x‖.

Proof. If |λ| > ‖x‖, then 1 > ‖λ−1x‖, so 1− λ−1x is invertible by the lemma. So λ− x is
invertible. So λ /∈ Spec(x).

Theorem 1.2. Spec(x) is compact and nonempty.
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Proof. Spec(x) is closed by continuity of y 7→ y−1. It is bounded, so it is compact. To
show that Spec(x) 6= ∅, let F : ρ(x) → M be F (λ) = (λ1 − x)−1. We claim that F is
analytic3: in fact, we have d

dλF (λ) = −(λ1 − x)−2. So if Spec(x) = ∅, then F is entire.
But lim|λ|→∞ ‖F (λ)‖ = 0, as

‖(λ− x)−1‖ = |λ−1|‖(1− x/λ)−1‖ ≤ 1

|λ|
1

1− ‖x/λ‖
→ 0.

By Liouville’s theorem, F is constant, so F = 0.4 But this is impossible.

Theorem 1.3 (Šilov). Let M be a Banach slagebra, and let N ⊆ M be a sub Banach
algebra containing 1M . If x ∈ N , then the boundary of SpecN (x) is a subset of of the
boundary of SpecM (x).

Remark 1.4. We always have SpecM (x) ⊆ SpecN (x). This theorem gives part of the
other direction.

Proof. It suffices to show that the boundary of SpecN (x) is contained in SpecM (x). Let
λ0 ∈ ∂ SpecN (x), and let {λn} ⊆ ρN (x) with λn → λ0. If for some n,m, we were to have
‖(λn−x)−1‖ < 1/|λ0−λn|, it would follow that ‖(λ0−x)−(λn−x)‖ < 1/‖(λn−x)−1‖. Thus,
λ0−x is invertible in N by the lemma. This is a contradiction, so ‖(λn−x)−1‖ → ∞. Now
if λ0 /∈ SpecM (x), then ‖(λ− x)−1‖ is bounded for λ close enough to λ0. This contradicts
‖(λn − x)−1‖ → ∞.

Lemma 1.2 (Spectral radius formula). R(x) = limn→∞ ‖xn‖1/n.

We will prove this later.

1.5 Contractivity of morphisms into C∗-algebras

Proposition 1.11. If N ⊆M are C∗-algebras with 1M ∈ N and x ∈ N , then SpecN (x) =
SpecM (x).

Proof. Assume first that x = x∗. Then SpecN (x),SpecM (x) ⊆ R. Then Šilov’s theorem
implies that SpecN (x) = SpecM (x). For general x, invertibility of x in M implies invert-
ibility of x∗x in M . This implies that x∗x is invertible in N , which provides a y ∈ N such
that (yx∗)x = 1. So x is invertible in N .

Proposition 1.12. Let M be a Banach involutive algebra, and let N be a C∗-algebra. Let
π : M → N be a unital *-morphism.5

3This is in the sense of holomorphic functional calculus.
4If you are uncomfortable with using Liouville’s theorem when F is operator-valued, use this trick. Take

any ϕ ∈M∗. Then λ 7→ ϕ(F (λ)) is analytic, entire, and = 0. Using Hahn-Banach, it follows that F = 0.
5This means it is an algebra homomorphism. This condition says nothing about the norm, a priori.
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Proof. For y ∈ N with y = y∗, we have ‖y2‖ = ‖y∗y‖ = ‖y‖2. Iterating thism we get
‖y2n‖1/2n = ‖y‖. The left hand side tends to R(y), so R(y) = ‖y‖. If x ∈ M , we have
SpecN (π(x)) ⊆ SpecM (x) (since π is an algebra homomorphism, it preserves invertibility).
So we get RN (π(x)) ≤ RM (x) ≤ ‖x‖. So

‖π(x)‖2 = ‖π(x∗x)‖ = RN (π(x∗x)) ≤ ‖x∗x‖ ≤ ‖x‖2.
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